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Abstract

We study the effects of time-varying volatility and investment horizon on the
economic significance of stock market return predictability from the perspective of
Bayesian investors. Using a vector autoregression framework with stochastic volatility
(SV) in market returns and predictor variables, we assess a broad set of twenty-six pre-
dictors with both in-sample and out-of-sample designs. Volatility and horizon are critic-
ally important for assessing return predictors, as these factors affect how an investor
learns about predictability and how she chooses to invest based on return forecasts.
We find that statistically strong predictors can be economically unimportant if they tend
to take extreme values in high volatility periods, have low persistence, or follow distri-
butions with fat tails. Several popular predictors exhibit these properties such that their
impressive statistical results do not translate into large economic gains. We also dem-
onstrate that incorporating SV leads to substantial utility gains in real-time forecasting.
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1. Introduction

Although investors and academics have long studied whether stock market returns are

predictable, many historically important predictor candidates have met with challenges on
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two fronts. In-sample predictability tests tend to generate only weak evidence in favor

of predictability with marginal statistical significance and low in-sample predictive R2s.

Out-of-sample tests reveal difficulties in return forecasting using information available in

real time (Goyal and Welch, 2008). Researchers have recently uncovered new predictors

that achieve strong in-sample statistical significance relative to their historical peers, and

many of the studies that propose these predictors also demonstrate success with real-time

forecasts. Several of these predictor variables do, however, display extreme time-series

properties and strong relations with stock market volatility that cast doubt on the plausibil-

ity and viability of their return forecasts.

We study in-sample and out-of-sample return predictability evidence from a broad set of

twenty-six predictor variables, fourteen from Goyal and Welch (2008) and twelve from more

recent publications in top finance journals. A key aspect of our study is that we consider the

effects of time-varying stock market volatility on predictability evidence. We do so by taking the

perspective of Bayesian investors who learn about the dynamics of returns and predictors from

a vector autoregression model in which returns and predictors have stochastic volatility (SV). In

addition to considering a 1-month investment horizon, we also investigate multi-month hori-

zons. Within this framework, we examine two types of investors: (i) those who learn from the

full time series of data and (ii) those who must learn from the data in real time. Our study thus

provides an expansive view of the effects of time-varying volatility and horizon on the in-sample

and out-of-sample evidence on return predictability.

We find that considering time-varying volatility and horizon has economically important

effects for inferences about predictability. In our in-sample analysis, we demonstrate that predic-

tors with strong statistical support in a traditional ordinary least squares (OLS) setting can be

economically unimportant, particularly if they tend to make extreme forecasts in periods of

high market volatility, have low persistence, or follow distributions with fat tails. At the same

time, some other variables with weak statistical evidence display relatively strong economic sig-

nificance in models with SV. In our out-of-sample setting, accounting for time-varying volatility

while making real-time forecasts leads to greater success. A real-time investor with a 1-month

horizon who learns from a constant-volatility (CV) model realizes a utility gain for only eleven

of the twenty-six predictors and most of these gains are economically small. The analogous in-

vestor who learns from a model with SV, in contrast, realizes real-time utility gains from twenty

of the twenty-six predictors. All told, six predictors (two from Goyal and Welch, 2008, and

four from newer studies) deliver economically meaningful performance in both in-sample and

out-of-sample tests at 1- and 3-month horizons.1

Our allowance for time-varying volatility and multi-month horizons differs from the ap-

proach in much of the previous literature. In a seminal paper, Kandel and Stambaugh

(1996) consider the economic significance of predictability in a setting with CV in stock

returns and a 1-month investment horizon, and they show that even weak statistical evi-

dence of predictability can translate into sizeable economic effects. In particular, the current

value of a weak predictor can have a strong influence on a Bayesian investor’s optimal allo-

cation to stocks and the investor perceives substantial utility gains from investing on

predictability evidence. As an example, the OLS slope coefficient for the dividend-price

ratio in a monthly forecasting regression has a P-value of 0.16 and the regression R2 value

1 These six predictors are the Treasury bill yield, the long-term Treasury bond yield, Chen and

Zhang’s (2011) EG, Cooper and Priestly’s (2009) output gap, Jones and Tuzel’s (2013) new orders-to-

shipments of durable goods, and Huang and Kilic’s (2019) gold-to-platinum price ratio.
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is only 0.002. When the 1-month, CV investor studied by Kandel and Stambaugh (1996)

forms beliefs based on information from the dividend-price ratio, she varies her allocation

to stocks between 3% and 100% during the 1927–2017 period and perceives a non-trivial

utility gain of 0.24% per year in certainty equivalent return (CER).

We initially show that in-sample CERs in Kandel and Stambaugh’s (1996) 1-month, CV

setting are tightly linked to the OLS R2 from a predictive regression,

rtþ1 ¼ aþ bxt þ �rtþ1; (1)

where rtþ1 is the log excess stock market return and xt is the value of a predictor variable at

the end of month t. In this sense, the OLS R2 metric that is commonly emphasized in the

predictability literature is economically meaningful. Within this framework, we demon-

strate that many of the twenty-six predictors are economically significant from the

Bayesian investors’ perspective. Among the fourteen Goyal–Welch variables, which tend to

have relatively low statistical support, the CER gains range from 0.03% per year for the

dividend-earnings ratio to 0.68% per year for net equity expansion. The twelve new

predictors tend to produce larger economic benefits, in line with their stronger in-sample

statistical significance. The range of annual CER gains is 0.55% for the nearness-to-Dow-

historical-high variable of Li and Yu (2012) to 4.36% for the variance risk premium (VRP)

of Bollerslev, Tauchen, and Zhou (2009). Panel A of Figure 1 shows that OLS R2 provides

a good fit to CER gain across predictors (the Spearman rank correlation is 0.999), such that

the statistical performance of predictors is quite informative about their relative in-sample

economic value in the 1-month, CV setting.

We proceed to study return predictability in the context of Bayesian investors who ac-

count for time variation in stock market volatility. From a statistical perspective, the evi-

dence in favor of time-varying volatility in stock returns is overwhelming (e.g., Bollerslev,

Engle, and Nelson, 1994). From a portfolio choice perspective, several studies document

the economic importance of considering time-varying volatility (e.g., Fleming, Kirby, and

Ostdiek, 2001, 2003).2 This evidence suggests that the SV setting provides a sensible back-

drop for studying the economic significance of return predictability.

SV interacts with return predictability to produce three primary effects on portfolio

choice with a 1-month horizon. First, a statistical effect changes inferences about the statis-

tical strength of a predictor. An investor who believes in SV weights observations in the

market return predictability regression based on their precision, such that the investor ef-

fectively downweights (upweights) information from high-volatility (low-volatility) periods

and more efficiently learns about the predictability relation. Inferences about the strength

of a predictor can thus differ across the CV and SV settings.3 Second, an average volatility

effect arises because of the positive time-series skewness in conditional market volatility. In

most months, the estimated conditional variance is less than the estimated unconditional

variance. The SV investor therefore believes that she can usually trade more aggressively

than the CV investor, such that the average volatility effect increases the economic signifi-

cance of each predictor. Third, a portfolio effect captures interactions between market

2 We also find that our Bayesian investors perceive large utility gains from acknowledging time vari-

ation in volatility.

3 In a frequentist setting, Johnson (2019) shows that in-sample and out-of-sample inferences about

predictability can change when estimating the predictability regression with weighted least

squares (WLS) using ex ante variance rather than with OLS.

Economic Significance of Stock Return Predictability 621

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/27/2/619/6588703 by guest on 04 April 2024



volatility and the predictor during the portfolio optimization stage. If a given predictor

tends to make extreme return forecasts that coincide with periods of pronounced market

volatility, the investor tends to moderate her bets and realize smaller CER gains. We find

that the statistical effect, the average volatility effect, and the portfolio effect vary in im-

portance across the predictors.
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Figure 1. OLS R2s and in-sample CER gains. The figure shows scatter plots of the OLS R2 from a pre-

dictive regression of log market excess returns on a predictor variable and the CER difference that cap-

tures the economic significance of return predictability. The predictive R2s are from monthly

regressions. The 1-month, CV (SV) CER gain in Panel A (Panel B) for a predictor is calculated as the dif-

ference between the CERs of the P-CV (P-SV) investor for the optimal strategies under the P-CV and

NP-CV (P-SV and NP-SV) models. The CER gains are annualized by multiplying the monthly CER gains

by 12.
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Considering SV is important for determining the in-sample economic significance of

predictability evidence. Some predictors have larger utility gains, as is the case for the

Treasury bill yield, which has a CER gain of 1.17% per year with SV versus only 0.34%

with CV. Alternatively, some predictors are less economically significant, such as the

partial least squares aggregated book-to-market ratio of Kelly and Pruitt (2013) with a

CER gain of only 0.55% in the SV model versus 3.36% in the CV model. Overall, con-

sidering SV increases perceived economic value for eleven of the twenty-six predictors

(seven of the fourteen Goyal–Welch predictors and four of the twelve new predictors),

whereas benefits fall for the remaining fifteen variables. The most pronounced increases

occur for variables from Goyal and Welch (2008) related to interest rate levels. Several

of the new predictors, in contrast, tend to take extreme values during high market vola-

tility periods, which lead to lower utility gains. Panel B of Figure 1 plots the association

between OLS R2 and CER gain across all twenty-six variables. The strong relation ob-

servable in the CV results is much less pronounced in the SV framework (the Spearman

rank correlation is 0.670).

We also consider the in-sample effect of investment horizon. Fama and French (1988)

demonstrate stronger statistical significance for multi-period return predictability, which

occurs when predictors are highly persistent (Boudoukh, Richardson, and Whitelaw,

2008). We specify Bayesian investors with multi-period horizons to quantify the economic

importance of persistence in return forecasts. The CER gain from considering predictabil-

ity evidence is lower when a given predictor variable is less persistent because expected re-

turn quickly converges toward its mean as horizon increases. In addition to this direct

channel, the perceived risk of stocks is higher because of uncertainty about future expected

returns, particularly for predictors with low persistence and high volatility (e.g., the VRP).

We show large effects of horizon on CER gains associated with many of the twenty-six

predictors.

Whereas the in-sample design provides a clean setting for demonstrating the econom-

ic mechanisms stemming from volatility and horizon, the practical appeal of return pre-

dictability rests in the potential for investment strategies based on real-time forecasts.

To study this important issue, we implement an out-of-sample, expanding-window ap-

proach for each model and predictor. In each month of the investment period, a

Bayesian investor estimates a model using historical data and determines the optimal

portfolio weight, and we use this solution as the investor’s weight in stocks in the next

month. After constructing the full time series of out-of-sample weights, we evaluate the

portfolio strategies for the models with predictability relative to benchmark models with

no predictability. We specifically compute annual out-of-sample CER gains from consid-

ering predictability.

Accounting for time-varying volatility greatly improves the potential for investment

strategies based on real-time forecasts. In the CV setting, only eleven of the twenty-six pre-

dictors produce a positive CER gain. Just six generate a CER gain of at least 0.5% per year

and two are statistically significant at the 10% level. In the SV setting, positive CER gains

are more common and larger on average. Twenty of the twenty-six predictors (twelve from

Goyal and Welch, 2008, and eight from newer studies) produce CER gains. Seventeen of

these gains exceed 0.5% per year. Eleven are statistically significant. As an illustration of

the potential value of considering time-varying volatility, the Treasury bill yield strategy in

the CV framework generates a utility loss with a CER difference of –0.13% per year. In

the SV framework, this predictor generates a large, statistically significant CER gain of
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3.86% per year. The success of a broad set of predictors in a real-time setting demonstrates

the practical relevance of considering time-varying volatility.

Our study fits within the literature investigating return predictability through the lens

of Bayesian investors. Kandel and Stambaugh (1996); Stambaugh (1999); Barberis (2000);

and Wachter and Warusawitharana (2009, 2015) consider stock market allocations based

on return predictability, as in our study.4 Avramov (2002, 2004) and Tu and Zhou (2010)

investigate portfolio choice with multiple assets that have predictable returns. Different

from these papers, we incorporate SV into returns and predictors while interpreting the re-

turn predictability evidence. There is also an established literature that assesses the eco-

nomic implications of predictability for investing in mutual funds (e.g., Avramov and

Wermers, 2006; Banegas et al., 2013), hedge funds (e.g., Avramov et al., 2011; Avramov,

Barras, and Kosowski, 2013), and pension funds (e.g., Christopherson, Ferson, and

Glassman, 1998).5

Three papers that consider time-varying market volatility in the context of Bayesian

investors are more closely related to ours. Shanken and Tamayo (2012) model returns with

time-varying volatility and with expected return as a function of time-varying volatility and

payout yield. Johannes, Korteweg, and Polson (2014) examine whether real-time investors

can benefit from information in payout yield and SV. Relative to these studies, we consider

a substantially broader set of return predictors and we find many of the most interesting

effects in predictors that are not closely related to payout yield. Pettenuzzo, Timmermann,

and Valkanov (2014) introduce SV in market returns in the context of specifying a con-

straint on the conditional market Sharpe ratio while estimating the predictive return regres-

sion. We directly study and quantify the impact of SV on predictability and portfolio

choice, and we consider a large set of new predictors in addition to those of Goyal and

Welch (2008).

The rest of the paper is organized as follows. Section 2 introduces the Bayesian invest-

or’s problem, the models for stock market returns, and our estimation procedures. Section

3 discusses the data. Section 4 develops analytical results on conditional return moments

and portfolio choice. Section 5 presents our in-sample results and Section 6 presents our

out-of-sample results. Section 7 provides a summary of the main results and Section 8

concludes.

2. Methodology

This section develops our approach to investigating the economic importance of stock mar-

ket return predictors. Section 2.1 introduces the Bayesian investor’s problem. Section 2.2

describes models for returns that either do not or do incorporate return predictability and

SV. Section 2.3 discusses estimation and Section 2.4 lays out our approaches to measuring

the economic significance of a given return predictor in the in-sample and out-of-sample

settings.

4 In a related study, Cremers (2002) compares the posterior views of Bayesian investors with priors

that are skeptical and confident about predictability.

5 Like our paper, many of these studies employ a Bayesian framework. See Avramov and Zhou (2010)

for a review. Rapach and Zhou (2022) provide a review of the return predictability literature using a

frequentist approach.

624 S. Cederburg et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/27/2/619/6588703 by guest on 04 April 2024



2.1 Bayesian Investor

We consider a Bayesian investor who chooses optimal allocations between the stock market

and a risk-free security. The investor has power utility over wealth at a horizon of k

months,

UðWTþkÞ ¼
W1�c

Tþk

1� c
; (2)

where c is the coefficient of relative risk aversion. Wealth at time Tþ k is given by

WTþk ¼WTðRf ;T!Tþk þ xTRT!TþkÞ; (3)

where Rf ;T!Tþk is the risk-free rate for a k-month horizon, RT!Tþk is the cumulative stock

market return in excess of the risk-free rate, and xT is a portfolio allocation to stocks that

is chosen at time T. We consider investors with c¼ 5 and horizons ranging from 1 to 6

months.6

Investor i’s beliefs about stock market return dynamics are based on a model Mi. The

investor maximizes expected utility at time T by choosing an optimal allocation to stocks,

max
xT

E½UðWTþkÞjMi;DT �; (4)

where the conditional expectation is taken with respect to the predictive distribution of ex-

cess stock market returns,

pðRT!TþkjMi;DTÞ ¼
ð

pðRT!TþkjMi; h;DTÞpðhjMi;DTÞdh; (5)

in which h is the set of parameters in modelMi, DT denotes the time series of returns and

state variables in modelMi, and pðhjMi;DTÞ is the posterior distribution of h. The predict-

ive distribution of excess returns in Equation (5) accounts for uncertainty about the param-

eters in the return process, such that the conditional expectation in Equation (4) integrates

over this uncertainty.

2.2 Return Process

We study the implications of stock return predictability, SV, and the interaction of these

two effects for Bayesian investors’ utility. As such, we specify four alternative models

featuring (i) no predictability with CV (NP-CV), (ii) predictability with CV (P-CV), (iii) no

predictability with SV (NP-SV), and (iv) predictability with SV (P-SV). Given a candidate

predictor variable xt, the processes for the excess stock market return and the state variable

are

rtþ1 ¼ aþ bxt þ �rtþ1; (6)

xtþ1 ¼ ax þ bxxt þ �xtþ1; (7)

where rtþ1 is the log excess return in month tþ1.7 Following much of the return predict-

ability literature, the expected log excess return is specified as a linear function of xt in

6 Results corresponding to investors with c ¼ 2 or c ¼ 8 are available in Online Appendix F, and infer-

ences about return predictors are similar to those in the c ¼ 5 base case.

7 We assume x0 is nonstochastic. Given this assumption, the predictive regression coefficient is un-

biased. See Stambaugh (1999) and Wachter (2010) for additional discussion.
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models P-CV and P-SV, and the predictor variable follows a stationary first-order autore-

gressive [AR(1)] process. The regression coefficients have a multivariate normal prior distri-

bution centered at 0 with large variance (106I). The models with no predictability (NP-CV

and NP-SV) have the restriction b¼0 and all four models have the restriction

�1 < bx < 1.

The error terms in Equations (6) and (7) are conditionally normally distributed, but the

conditional distributions differ across the CV models and the SV models. The errors for the

CV models (NP-CV and P-CV) are distributed bivariate normal,

�rtþ1

�xtþ1

� �
� Nð0;RÞ; R ¼ r2

r rrx

rrx r2
x

� �
: (8)

The covariance matrix has an inverse-Wishart prior distribution centered at the sample esti-

mate using an empirical Bayes approach and 5 degrees of freedom (the matrix dimension

plus 3; see, e.g., Rossi, Allenby, and McCulloch, 2005), such that R has a diffuse but proper

prior distribution.

The errors for the SV models (NP-SV and P-SV) follow the specification of Primiceri

(2005). In particular, �rtþ1 and �xtþ1 are conditionally normally distributed,

�rtþ1

�xtþ1

� �
� Nð0;RtÞ; Rt ¼

r2
r;t rrx;t

rrx;t r2
x;t

" #
: (9)

The conditional covariance matrix Rt can be decomposed as

Rt ¼
1 0
at 1

� �
r2

r;t 0

0 ~r2
x;t

" #
1 at

0 1

� �
; (10)

where at ¼ rrx;t=r2
r;t; ~r2

x;t ¼ r2
x;t � a2

t r
2
r;t and the processes for the time-varying parameters

are

logðrr;tÞ ¼ logðrr;t�1Þ þ gr
t ; gr

t � Nð0;VrÞ; (11)

logð~rx;tÞ ¼ logð~rx;t�1Þ þ gx
t ; gx

t � Nð0;VxÞ; (12)

at ¼ at�1 þ ga
t ; ga

t � Nð0;VaÞ: (13)

This specification for Rt allows for time variation in the conditional volatilities of the return

and the state variable as well as time variation in the contemporaneous correlation between

the errors. The initial states logðrr;0Þ; logð~rx;0Þ, and a0 have normal prior distributions

with mean 0 and variance of 4, and the Vr, Vx, and Va hyperparameters have inverse-

gamma prior distributions with scale parameter 0:12 and shape parameter of 2. Additional

details on prior parameters for all models are available in Online Appendix A.8

8 We investigate the sensitivity of inferences to prior parameters by calculating CER differences be-

tween the base case and alternative specifications. Specifically, we consider all P-SV model speci-

fications in which the prior variance of a normal prior distribution or the scale parameter of an

inverse-gamma prior distribution either increases or decreases by a factor of 4. The CER differen-

ces are economically small in all cases, such that our conclusions are not driven by our choices

for prior parameter values. See Online Appendix A for additional details.
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2.3 Estimation and Discussion

Each of the four models introduced in Section 2.2 is a restricted Bayesian vector autoregres-

sion (BVAR). We implement Markov chain Monte Carlo (MCMC) algorithms to estimate

the models. We use a Gibbs sampler to estimate the BVARs for the NP-CV and P-CV

models, and we use the Gibbs sampler of Primiceri (2005) and Del Negro and Primiceri

(2015) to estimate the NP-SV and P-SV models. See Online Appendix A for additional

information.

Before proceeding, two aspects related to the design and estimation of our SV process

warrant further discussion. First, some studies specify SV processes with mean reversion,

whereas we follow Primiceri (2005) in assuming random walks in Equations (11) and (12)

for tractability. In Online Appendix B, we compare our SV estimates for returns from

Equation (11) with those from a univariate SV model with mean reversion. The two volatil-

ity estimates are nearly indistinguishable with a time-series correlation of 0.997, such that

our assumption that log volatility follows a random walk has little impact on our findings.9

Second, volatility models are often estimated with daily or even intraday data, whereas we

use monthly data to estimate the models. The structure of the model in Equations (6) and

(7) requires that we use the same frequency of data for returns and predictors and we use

monthly predictor data. Further, we show in Online Appendix B that volatility estimates

using monthly data provide better forecasts of monthly squared stock returns compared

with volatility estimates using daily data. Given that our investors in Section 2.1 have hori-

zons of at least 1 month, the monthly estimates are more relevant in the context of our port-

folio choice problem.

2.4 Economic Significance of a Predictor

We examine Bayesian investors’ CERs to quantify the economic significance of return pre-

dictability in the presence of SV and multi-period investment horizons. Section 2.4.a

describes CER calculations for the in-sample design and Section 2.4.b provides the corre-

sponding discussion for the out-of-sample design.

2.4.a. In-sample CERs

We evaluate the in-sample significance of information from a predictor variable by compar-

ing the CER for the optimal policy from a model that includes the predictor with the CER

that corresponds to the policy that would be optimal under an otherwise similar model

without predictability. For example, to discern the effect of return predictability in a setting

with SV, we compare the CER for the optimal P-SV policy with the CER that the P-SV in-

vestor assigns to the optimal policy for the NP-SV model. In these cases, expected utility is

taken with respect to the predictive return distribution from the P-SV model and the com-

parison of CERs for the P-SV and NP-SV models isolates the economic effect of the return

predictability signal in the SV setting.

9 We also compare our SV process with other volatility frameworks from the literature in Online

Appendix B. Our SV process identifies the same high- and low-volatility periods as the generalized

autoregressive conditional heteroskedasticity (GARCH) model, the exponential GARCH (EGARCH)

model, and realized variance (RV) forecasts using lagged RV estimates. The time-series correla-

tions between our estimates and the estimates from these models are 0.880 for GARCH, 0.883 for

EGARCH, and 0.877 for RV.
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Formally, consider investor i who forms beliefs about the predictive return distribution

in Equation (5) using modelMi. Investor i’s CER at time T with the optimal policy under

modelMi denoted as x�i;T ,

CERis
i ¼ ½ð1� cÞWc�1

T E½UðWTðRf ;T!Tþk þ x�i;TRT!TþkÞÞjMi;DT ��
1

1�c; (14)

can be compared with investor i’s CER from adopting the optimal policy x�j;T from an alter-

native modelMj,

CERis
i;j ¼ ½ð1� cÞWc�1

T E½UðWTðRf ;T!Tþk þ x�j;TRT!TþkÞÞjMi;DT ��
1

1�c: (15)

The CER difference, DCERis
i;j ¼ CERis

i � CERis
i;j, reflects the economic magnitude of

the difference between the optimal policies under models Mi and Mj from investor i’s

perspective. Note that these in-sample CER gains do not distinguish which model provides

a better statistical fit to the data or objectively better ex ante return forecasts. Rather,

these metrics reflect the extent of differences in the predictive return distributions of the

models. This method of measuring the economic significance of information is used

by Kandel and Stambaugh (1996); Pástor and Stambaugh (2000); and Avramov (2004),

among others.

We are particularly interested in the time-series properties of predictors and the corre-

sponding effects on economic significance. Several of the predictor variables take on ex-

treme values, often during periods of high stock market volatility. As such, our in-sample

analysis preserves the time-series properties of the data. To evaluate a given predictor, we

first estimate each model using the full time series of data to produce a posterior distribu-

tion of parameters, pðhjMi;DTÞ. We then consider the predictive return distribution in

each month of the sample period. We denote months by s ¼ 1; . . . ;T in this stage of the

analysis to differentiate from the t ¼ 1; . . . ;T notation in the estimation stage. The predict-

ive distribution for modelMi in each month s is based on the posterior draws of parame-

ters [pðhjMi;DTÞ] and the value of the predictor variable in that month (xs). In the models

with SV, we maintain the relation between xs and Rs that is estimated from the data, which

is important for our goal of investigating interactions between return predictability and SV.

Our analysis thus takes the perspective of a hypothetical investor whose beliefs about return

predictability and volatility mirror the full-sample posterior distribution (reflecting the in-

sample design). This investor optimizes in each month of the sample based on the observed

predictor variable (preserving the time-series properties of the data).

We estimate the in-sample CER difference between models Mi and Mj using the pre-

dictive distributions for each month s of the sample. For each model and month, we calcu-

late the optimal weight in stocks for the investor described in Section 2.1. We then

calculate the time-series averages of the expected utilities that investor i gains from using

the optimal portfolio policies from models Mi and Mj. We calculate CERis
i and CERis

i;j

according to Equations (14) and (15) and we annualize by multiplying k-horizon CERs by

12/k and compute the CER difference DCERis
i;j. Additional details about these calculations

are provided in Online Appendix A.

2.4.b. Out-of-sample CERs

We implement an out-of-sample portfolio design to complement the in-sample approach.

The in-sample CERs described in Section 2.4.a correspond to investors who learn about

predictability from the full sample of data, which would not have been available to
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investors in real time. Investors in our out-of-sample approach, in contrast, must learn sole-

ly from historical data when determining their optimal portfolio weights.

We adopt an expanding-window design for our out-of-sample tests. For a given model

Mi and an estimation window of length s, we estimate the model using data on returns

(r1; . . . ; rs) and predictors (x0; . . . ;xs�1) that were available at the end of month s of the

sample. We then produce the horizon-k predictive distribution of Rs!sþk (i.e., the cumula-

tive return earned in months sþ 1 to sþ k) using the predictor value xs and posterior

pðhjMi;DsÞ. The investor described in Section 2.1 maximizes expected utility with the opti-

mal portfolio weight x�i;s. The minimum estimation window length is 240 months, such

that s ¼ 240; . . . ;T � 1. The expanding-window approach therefore produces a time series

of out-of-sample portfolio weights x�i;240; . . . ;x�i;T�1.

Given the optimal weights for a given modelMi, we evaluate the realized returns on the

strategy portfolio. With a 1-month horizon, strategy i’s portfolio return in month sþ 1 is

Ri;sþ1 ¼ Rf ;sþ1 þ x�i;sRsþ1; (16)

where Rf ;sþ1 is the risk-free rate and Rsþ1 is the excess market return. We calculate the

power utility investor’s annualized out-of-sample CER for each model and predictor given

the time series of realized strategy returns. Of note, these out-of-sample CERs do not direct-

ly depend on the investor’s beliefs about model parameters or the predictive return distribu-

tion, which differentiates their interpretation from the in-sample CERs that depend on

expectations taken under the investor’s predictive distribution. The out-of-sample CERs,

rather, condition on the time-series realization of out-of-sample strategy returns, and they

represent utility gains that real-time investors could have achieved by investing in the strat-

egies (assuming no trading costs and the ability to borrow at the risk-free rate).

We compare out-of-sample CERs across the models with and without predictability to

assess the real-time value of a given predictor. To assess the statistical significance of the

CER difference between modelsMi andMj (i.e., DCERos
i;j ), we design a bootstrap approach

that resamples the paired out-of-sample strategy return realizations (i.e., Ri;s and Rj;s). We

form bootstrap samples of T�240 months of strategy returns to match the out-of-sample

period length and calculate the CER difference for each bootstrap sample. We then com-

pute the percentage of bootstrap CER differences that are negative to determine a bootstrap

P-value that corresponds to the one-sided test of the null hypothesis that the gain is less

than zero. Additional details on out-of-sample estimation, CER calculations, and bootstrap

design are available in Online Appendix A.

3. Data

Our empirical tests focus on forecasting log excess stock market returns using a variety of

predictor variables. The market portfolio is the Center for Research in Securities Prices

(CRSP) value-weighted index. We collect monthly time-series data on the excess market re-

turn and the risk-free rate from Kenneth French’s website.10 The log excess market return is

the log return on the CRSP index less the log return on the risk-free asset.

We consider a wide range of forecasting variables from prior literature. We examine

stock return predictability at a monthly horizon, so we restrict the sample to predictors that

10 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth French for mak-

ing these data available.
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are available at a monthly frequency. We also require that each predictor variable has data

availability through December 2017. We provide a brief overview of the predictors below.

Full details on variable definitions, data sources, and construction methods are available in

Online Appendix C.

We start with the fourteen monthly predictor variables from Goyal and Welch (2008).

This set of predictors includes the dividend-price ratio (DP), the dividend yield (DY), the

earnings-price ratio (EP), the dividend-earnings ratio (DE), stock market variance (SVAR),

the book-to-market ratio (BM), net equity expansion (NTIS), the Treasury bill yield (TBL),

the long-term Treasury bond yield (LTY), the long-term Treasury bond return (LTR), the

term spread (TMS), the default yield spread (DFY), the default return spread (DFR), and in-

flation (INFL). This group of forecasting variables is widely used in the literature on stock

market return predictability.

We augment the Goyal–Welch predictors with a second group of twelve forecasting vari-

ables introduced in more recent literature. We specifically search articles appearing in top fi-

nance journals subsequent to the publication of Goyal and Welch (2008) and identify

predictors with data availability at a monthly frequency. This group includes Kelly and

Pruitt’s (2013) partial least squares aggregated book-to-market ratio (PLS), Chen and

Zhang’s (2011) employment growth (EG), Cooper and Priestly’s (2009) output gap (GAP),

Jones and Tuzel’s (2013) new orders-to-shipments of durable goods (NOS), Li and Yu’s

(2012) nearness to Dow historical high (DOW), Kelly and Jiang’s (2014) tail risk (TAIL),

Pollet and Wilson’s (2010) average correlation (COR), Rapach, Ringgenberg, and Zhou’s

(2016) short interest index (SII), Huang and Kilic’s (2019) gold-to-platinum price ratio (GP),

Driesprong, Jacobsen, and Maat’s (2008) oil price change (OIL), Bollerslev, Tauchen, and

Zhou’s (2009) VRP, and Bollerslev, Todorov, and Xu’s (2015) left jump tail variation (LJV).

Table I reports summary statistics for the twenty-six predictor variables. Panel A

presents the sample period start date, mean, standard deviation, skewness, and kurtosis for

each of the Goyal–Welch predictors and Panel B shows the corresponding statistics for the

new predictors. The times series for the Goyal–Welch variables in Panel A and the PLS vari-

able in Panel B begin in January 1927. Data for the other new predictors cover shorter sam-

ple periods.

Table I highlights distributional properties of the predictors that are relevant for our

subsequent analysis. In particular, the empirical distributions for several of the forecasting

variables are highly non-normal, as indicated by the skewness and kurtosis statistics. In the

standard univariate predictive regression setting, non-normal forecasting variables imply

that conditional expected stock returns are also non-normal and tend to take on extreme

values in a few sample months. Deviations from normality are acute for several of the new

predictor variables. Both PLS and VRP, for example, are highly negatively skewed. These

variables are positive return predictors, such that negative skewness translates into extreme

negative expected return forecasts for months in which PLS and VRP take on their lowest

values. The PLS and VRP predictors also exhibit fat tails, with kurtosis measures of 32.62

and 56.99, respectively.

Table II presents results from standard univariate predictive regressions of excess stock

market returns [i.e., Equation (6)] and predictor variables [i.e., Equation (7)]. For each re-

gression, the table reports the OLS estimate of the slope coefficient, its corresponding two-

tailed P-value based on the OLS standard error, and the regression R2.

The state variable regression estimates in Table II reveal substantial variation in meas-

ures of persistence across the predictors. Fifteen of the twenty-six forecasting variables have
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monthly autocorrelation coefficients that exceed 0.95. Five predictors, in contrast, have

autocorrelation coefficients below 0.50 in magnitude. Autocorrelation is an important sum-

mary measure because more persistent predictors tend to be more influential in settings that

require multi-period return forecasts.

For the return regressions in Panel A of Table II that use the Goyal–Welch predictors,

the statistical evidence in favor of predictability is modest. Only six of the fourteen varia-

bles are statistically significant return predictors at the 10% level and none is significant at

the 1% level. The monthly R2 values tend to be small, ranging from 0.000 to 0.006.

Table I. Summary statistics for predictor variables

The table reports summary statistics for stock market return predictor variables. Panel A shows

summary statistics for the Goyal–Welch predictors and Panel B displays summary statistics for

the new predictors. All predictor variables are monthly such that the summary statistics reflect

monthly values. The sample period end date for each predictor is December 2017.

Predictor Sample

start

Mean Standard

deviation

Skewness Kurtosis

Panel A: Goyal and Welch (2008) predictors

DP 1927:01 –3.37 0.46 –0.22 2.66

DY 1927:01 –3.32 0.45 –0.46 2.73

EP 1927:01 –2.74 0.42 –0.60 5.62

DE 1927:01 –0.64 0.33 1.52 9.03

SVAR 1927:01 0.00 0.01 5.79 46.65

BM 1927:01 0.57 0.27 0.78 4.46

NTIS 1927:01 0.02 0.03 1.65 11.25

TBL 1927:01 0.03 0.03 1.08 4.28

LTY 1927:01 0.05 0.03 1.08 3.60

LTR 1927:01 0.00 0.02 0.59 7.69

TMS 1927:01 0.02 0.01 –0.29 3.17

DFY 1927:01 0.01 0.01 2.48 11.87

DFR 1927:01 0.00 0.01 –0.39 10.79

INFL 1927:01 0.00 0.01 1.08 16.82

Panel B: New predictors

PLS 1927:01 –0.71 0.34 –4.68 32.62

EG 1939:05 0.01 0.01 –0.20 11.54

GAP 1947:12 0.00 0.07 –0.03 1.98

NOS 1958:02 0.01 0.04 –0.01 4.72

DOW 1960:01 0.90 0.10 –1.11 3.93

TAIL 1963:01 0.00 1.00 –0.49 2.79

COR 1963:03 0.26 0.11 0.86 4.36

SII 1973:01 0.00 0.25 0.38 2.97

GP 1975:01 –0.20 0.28 –0.57 2.51

OIL 1983:04 0.00 0.09 –0.21 5.33

VRP 1990:01 16.20 20.40 –3.72 56.99

LJV 1996:06 0.00 0.00 2.96 14.43
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Panel B of Table II shows that the new predictors generate much stronger statistical sup-

port for return predictability. Eleven of the twelve variables are statistically significant at

the 10% level and six remain significant at the 1% level. The regression R2s are also more

impressive than those in Panel A, with R2 values as high as 0.031 for PLS and 0.049 for

VRP. Based on the analysis in Kandel and Stambaugh (1996), these results suggest that

many of the new predictors should be of considerable economic value to investors making

asset allocation decisions. At the same time, however, the non-normal distributions for

Table II. Predictive regression coefficients from OLS

The table reports predictive regression coefficients, associated P-values against the null of no

predictability, and regression R2s from OLS regressions. Panel A shows predictive regression

results for the Goyal–Welch predictors and Panel B displays results for the new predictors. The

predictive regressions are monthly log stock market excess returns on lagged predictor varia-

bles and monthly predictor variables on lagged predictor variables.

Stock market return State variable

Predictor b P-value R2 bx P-value R2

Panel A: Goyal and Welch (2008) predictors

DP 0.005 0.161 0.002 0.993 0.000 0.986

DY 0.008 0.029 0.004 0.993 0.000 0.986

EP 0.008 0.052 0.003 0.987 0.000 0.974

DE –0.002 0.623 0.000 0.991 0.000 0.983

SVAR –0.383 0.173 0.002 0.633 0.000 0.400

BM 0.013 0.031 0.004 0.986 0.000 0.972

NTIS –0.157 0.012 0.006 0.981 0.000 0.962

TBL –0.092 0.077 0.003 0.993 0.000 0.986

LTY –0.073 0.210 0.001 0.996 0.000 0.992

LTR 0.113 0.090 0.003 0.043 0.152 0.002

TMS 0.188 0.131 0.002 0.961 0.000 0.924

DFY 0.152 0.516 0.000 0.975 0.000 0.951

DFR 0.187 0.117 0.002 –0.121 0.000 0.015

INFL –0.300 0.323 0.001 0.481 0.000 0.231

Panel B: New predictors

PLS 0.028 0.000 0.031 0.962 0.000 0.925

EG –0.388 0.010 0.007 0.887 0.000 0.787

GAP –0.091 0.000 0.019 0.989 0.000 0.979

NOS –0.119 0.005 0.011 0.655 0.000 0.435

DOW –0.032 0.070 0.005 0.938 0.000 0.879

TAIL 0.004 0.017 0.009 0.816 0.000 0.667

COR 0.030 0.045 0.006 0.900 0.000 0.809

SII –0.015 0.056 0.007 0.972 0.000 0.941

GP 0.019 0.007 0.014 0.990 0.000 0.975

OIL –0.034 0.130 0.005 0.172 0.000 0.030

VRP 0.046 0.000 0.049 0.276 0.000 0.076

LJV 4.274 0.041 0.016 0.959 0.000 0.922
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these variables and their other time-series properties may limit their value in portfolio

applications.11

4. Analytical Results and Predictive Return Distributions

Our framework in Section 2 is based on a Bayesian investor who optimizes power utility

given a predictive distribution of returns. In this section, we develop analytical results to

better understand the sources of economic value from return predictability. To best high-

light the economic links between predictor properties and portfolio choice, we focus in this

section on the in-sample design in which the investor conditions on the full-sample poster-

ior distribution of model parameters. The analysis draws on the fact that the portfolio-

choice decision introduced in Section 2.1 is well described by its dependence on conditional

return moments. In particular, the optimal weight in stocks chosen by the power utility in-

vestor using modelMi is closely approximated by (e.g., Kandel and Stambaugh, 1996)

x�i;s �
li;s

cr2
i;s

þ 1

2c
; (17)

where li;s and r2
i;s are defined to be the conditional mean and variance, respectively, of the

time-s predictive distribution of log excess returns. Equation (17) illustrates that consider-

ing return predictability will generate time variation in optimal portfolio weights through

variation in li;s, all else equal. In addition, in models with time-varying volatility, the effect

of return predictability on portfolio choice is dependent on the interaction between li;s and

r2
i;s. The investor’s reaction to the information content of li;s will be dampened (amplified)

when r2
i;s is relatively high (low). Section 4.1 considers the behavior of li;s and r2

i;s given the

structure of the VARs in Section 2.2. Section 4.2 formally links conditional return moments

to in-sample CER gains and develops our approach to quantifying the economic effects of

variation in (and interactions between) conditional moments.

4.1 Predictive Return Moments

According to Equation (17), the optimal portfolio weight relates to the mean and variance

of the predictive return distribution. We proceed to derive these conditional moments as

functions of parameters and state variables. As described in Section 2.4.a, we produce a

predictive return distribution for each month s that conditions on the full-sample posterior

distribution and month-s state variables, such that we calculate conditional moments corre-

sponding to each month s and horizon k. We specialize in this section to a single-period

horizon and corresponding results for multi-period horizons are available in Online

Appendix D.

11 It is also important to consider the correlation between the estimated innovations to returns and

predictor variables. For a positive return predictor [i.e., one with b̂ > 0 in Equation (6)] in a setting

with constant volatility, for example, the innovations in Equations (6) and (7) would need to be

negatively correlated for increases in expected future returns to be associated with low current

returns (Campbell, 1991). The required relation is more complex in a setting with SV, but a predict-

or with a large positive correlation of innovations could raise some concern. To examine this

issue, we compute signðb̂Þ � corrð�̂r
tþ1; �̂

x
tþ1Þ for each predictor. The relatively large positive val-

ues of this quantity for TAIL (0.47), SVAR (0.29), and DFR (0.17) signal problems with the plausibility

of the return processes implied by these three variables.
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The conditional mean of the predictive distribution of log excess returns is

li;s ¼ Eðaþ bxsjMi;DTÞ: (18)

The quantities EðajMi;DTÞ and EðbjMi;DTÞ are posterior means of the a and b parame-

ters from the predictive regression in Equation (6). Recall that b is restricted to equal zero

for the NP-CV and NP-SV models, such that the conditional mean is constant.

For the models with predictability, inferences about a and b can differ substantially

across the P-CV and P-SV models. Estimation in the CV framework is similar in spirit to

OLS in which periods are equally weighted, whereas the SV model is similar to WLS in that

it weights information from each period based on conditional variance. For a given predict-

or, the relative variation in the conditional mean implied by the P-CV and P-SV models is

dependent on the relative magnitude of b.

To demonstrate the differences in b estimates across models, Figure 2 shows quantiles of

b posterior distributions for each predictor under the P-CV and P-SV models. Panel A

shows results for the Goyal–Welch predictors and Panel B displays posteriors for the new

predictors. For each posterior, we plot the posterior median, interquartile range, and 95%

credible interval. The posteriors for many of the predictors are similar across models, but

there are several with important differences. For instance, there is greater than 75% poster-

ior probability that returns are more predictable under the P-SV model compared with the

P-CV model using the TBL, LTY, and INFL variables, whereas returns are less predictable

under the P-SV model with more than 75% posterior probability for the DY, BM, DFR,

PLS, and GP predictors.

The predictive variance of single-period log returns has two components,

r2
i;s ¼ Eðr2

r;sjMi;DTÞ þ Varðaþ bxsjMi;DTÞ: (19)

The first term corresponds to the posterior mean of the conditional variance of the single-

period return shock. The second term measures estimation risk from posterior uncertainty

about the conditional mean. This feature of the asset allocation problem for a Bayesian invest-

or is introduced by Klein and Bawa (1976). Parameter uncertainty increases the risk of stocks

from the investor’s perspective relative to an environment with known parameters. All else

equal, the estimation risk term will be smaller when the model parameters are more precisely

estimated. Ex ante, we may expect b posteriors to be somewhat tighter under the SV frame-

work, analogous to the greater efficiency of WLS versus OLS, which would lead to a smaller

contribution of estimation risk to predictive variance. Most of the posteriors in Figure 2 sup-

port this prediction. In addition, the value of the predictor variable xs affects estimation risk

for the P-CV and P-SV models. If xs takes on an extreme value, estimation risk is amplified

because the magnitude of Varðaþ bxsjMi;DTÞ is dependent on x2
s .

We calculate li;s and r2
i;s for each month s based on xs and the full-sample posterior

parameters (including Rs). Table III shows the time-series mean and standard deviation of

li;s and ri;s for each model specification. Panel A reports results for the Goyal–Welch pre-

dictors and Panel B shows statistics for the new predictors. All statistics are reported in per-

centage per month.

There are several notable results in Panel A of Table III. First, given that the NP-CV

models share the same sample period and do not incorporate predictability, the model

moments are virtually indistinguishable across predictors. Second, within each volatility

framework, the volatility estimates are not strongly influenced by predictability or a
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particular predictor. That is, volatility estimates for a given model are similar across predic-

tors and volatility estimates for a given predictor are similar for the NP-CV and P-CV cases

as well as for the NP-SV and P-SV cases. Third, the predictive standard deviation ri;s varies

over time for the P-CV models (i.e., the time-series standard deviation of ri;s is positive) be-

cause the estimation risk component of Equation (19) is dependent on xs, but the magni-

tude of this variation is small.

Fourth, and most important, the time-series standard deviations of li;s for the P-CV and

P-SV models indicate the degree of return predictability in each model, and Equation (17)

shows that time variation in li;s translates directly into variation in the optimal weight x�i;s.

In the CV case, there is virtually a perfect correlation between the magnitude of variation in

li;s and the OLS R2 from a predictive regression. The most volatile li;s among the P-CV

models in Panel A of Table III, for example, belongs to NTIS, which also has the highest

P-CV P-SV
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

P-CV P-SV

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

P-CV P-SV

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

P-CV P-SV
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

P-CV P-SV
-2

-1

0

1

2

P-CV P-SV
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

P-CV P-SV
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

P-CV P-SV

-0.2

-0.1

0.0

0.1

0.2

P-CV P-SV
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

P-CV P-SV
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

P-CV P-SV

-0.4

-0.2

0.0

0.2

0.4

P-CV P-SV
-1.0

-0.5

0.0

0.5

1.0

P-CV P-SV

-0.4

-0.2

0.0

0.2

0.4

P-CV P-SV

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

P-CV P-SV
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

P-CV P-SV

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

P-CV P-SV
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

P-CV P-SV

-0.2

-0.1

0.0

0.01

0.02

P-CV P-SV
-0.08

-0.04

0.00

0.04

0.08

P-CV P-SV

-0.008

-0.004

0.000

0.004

0.008

P-CV P-SV

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

P-CV P-SV

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

P-CV P-SV

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

P-CV P-SV

-0.08

-0.04

0.00

0.04

0.08

P-CV P-SV
-0.08

-0.04

0.00

0.04

0.08

P-CV P-SV

-8

-4

0

4

8

A

B

Figure 2. Posteriors of predictive regression coefficients in the CV and SV models. The figure shows a

box-and-whiskers plot for the posterior distribution of the predictive regression coefficient for each

model and predictor combination. Panel A shows posteriors for the Goyal–Welch predictors and Panel

B shows posteriors for the new predictors. Each predictor has posteriors for the P-CV and P-SV mod-

els. In each box-and-whiskers plot, the center line shows the posterior median, the box represents a

50% credible interval, and the whiskers span a 95% credible interval.

Economic Significance of Stock Return Predictability 635

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/27/2/619/6588703 by guest on 04 April 2024



predictive regression R2 in Panel A of Table II. In line with Cochrane (2008, 2011), the pre-

dictive regressions produce economically meaningful time variation in expected returns

even though the R2s in Table II are small. We can also compare estimates across the P-CV

and P-SV models because both models for a given predictor use the same time series of the

predictor variable. The relative variation in li;s across models depends on the relative mag-

nitudes of the b estimates that are shown in Figure 2.

Panel B of Table III reports results for the new predictors. Recall that each predictor in

Panel B has a unique sample starting date, such that the means of li;s and ri;s differ substan-

tially across predictors even for the NP-CV model because of the differing sample periods.

Table III. Time-series means and standard deviations of conditional return moments

The table reports the time-series mean and standard deviation of the conditional mean (i.e., li ;s)

and standard deviation (i.e., ri ;s) of the predictive return distribution from the NP-CV, P-CV,

NP-SV, and P-SV models. The conditional moments are monthly figures and all statistics are

reported as percentages.

NP-CV P-CV NP-SV P-SV

li;s ri;s li;s ri;s li;s ri;s li;s ri;s

Std. Std. Std. Std. Std. Std. Std. Std.

Predictor Mean dev. Mean dev. Mean dev. Mean dev. Mean dev. Mean dev. Mean dev. Mean dev.

Panel A: Goyal and Welch (2008) predictors

DP 0.46 0.00 5.10 0.00 0.46 0.22 5.10 0.00 0.87 0.00 4.55 2.19 0.92 0.20 4.57 2.20

DY 0.46 0.00 5.10 0.00 0.46 0.32 5.09 0.00 0.81 0.00 4.55 2.18 0.83 0.19 4.55 2.16

EP 0.46 0.00 5.10 0.00 0.46 0.28 5.10 0.01 0.81 0.00 4.55 2.18 0.82 0.18 4.56 2.16

DE 0.46 0.00 5.10 0.00 0.46 0.07 5.10 0.01 0.81 0.00 4.55 2.18 0.82 0.05 4.57 2.19

SVAR 0.46 0.00 5.10 0.00 0.46 0.20 5.10 0.02 0.81 0.00 4.55 2.18 0.72 0.33 4.56 2.18

BM 0.46 0.00 5.10 0.00 0.46 0.32 5.09 0.01 0.85 0.00 4.55 2.19 0.90 0.18 4.57 2.19

NTIS 0.46 0.00 5.10 0.00 0.46 0.36 5.09 0.01 0.81 0.00 4.55 2.18 0.77 0.29 4.54 2.14

TBL 0.46 0.00 5.10 0.00 0.46 0.26 5.10 0.00 0.81 0.00 4.55 2.18 0.78 0.39 4.55 2.21

LTY 0.46 0.00 5.10 0.00 0.46 0.18 5.10 0.00 0.83 0.00 4.55 2.18 0.81 0.31 4.55 2.21

LTR 0.46 0.00 5.10 0.00 0.46 0.25 5.10 0.01 0.78 0.00 4.55 2.17 0.78 0.32 4.54 2.17

TMS 0.46 0.00 5.10 0.00 0.46 0.22 5.10 0.00 0.81 0.00 4.55 2.18 0.81 0.15 4.55 2.17

DFY 0.46 0.00 5.10 0.00 0.46 0.10 5.10 0.01 0.81 0.00 4.55 2.18 0.85 0.12 4.57 2.20

DFR 0.46 0.00 5.10 0.00 0.46 0.23 5.10 0.01 0.81 0.00 4.55 2.18 0.81 0.03 4.56 2.18

INFL 0.46 0.00 5.10 0.00 0.46 0.14 5.10 0.01 0.81 0.00 4.55 2.18 0.80 0.31 4.56 2.20

Panel B: New predictors

PLS 0.46 0.00 5.10 0.00 0.46 0.85 5.03 0.05 0.83 0.00 4.55 2.19 0.70 0.49 4.54 2.09

EG 0.52 0.00 4.14 0.00 0.52 0.33 4.13 0.01 0.78 0.00 3.97 1.16 0.79 0.41 3.96 1.16

GAP 0.50 0.00 4.07 0.00 0.50 0.54 4.04 0.01 0.78 0.00 3.90 1.12 0.75 0.45 3.89 1.10

NOS 0.42 0.00 4.17 0.00 0.42 0.41 4.15 0.01 0.74 0.00 3.98 1.21 0.76 0.38 3.97 1.19

DOW 0.40 0.00 4.20 0.00 0.40 0.27 4.20 0.01 0.71 0.00 4.02 1.21 0.79 0.26 4.03 1.21

TAIL 0.39 0.00 4.21 0.00 0.39 0.37 4.20 0.01 0.71 0.00 4.02 1.23 0.66 0.24 4.01 1.19

COR 0.39 0.00 4.22 0.00 0.39 0.31 4.21 0.01 0.71 0.00 4.02 1.23 0.78 0.29 4.02 1.22

SII 0.41 0.00 4.36 0.00 0.41 0.34 4.36 0.01 0.75 0.00 4.17 1.30 0.73 0.22 4.17 1.28

GP 0.52 0.00 4.22 0.00 0.52 0.47 4.21 0.01 0.80 0.00 4.04 1.20 0.75 0.29 4.04 1.17

OIL 0.51 0.00 4.20 0.00 0.51 0.29 4.20 0.01 0.83 0.00 3.96 1.32 0.85 0.36 3.96 1.33

VRP 0.53 0.00 4.06 0.00 0.53 0.85 3.98 0.10 0.90 0.00 3.85 1.41 1.05 0.86 3.81 1.37

LJV 0.48 0.00 4.32 0.00 0.48 0.52 4.30 0.05 0.90 0.00 4.11 1.46 1.03 0.42 4.12 1.46
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Comparing the statistics in Panel B with those in Panel A, the magnitude of time variation in

li;s tends to be larger for the new predictors, in line with their higher predictive regression R2s

in Table II. This pattern suggests that optimal weights using the new predictors are likely to be

more volatile according to Equation (17). The results also indicate that inferences differ sub-

stantially across the P-CV and P-SV models. For instance, the time-series standard deviation of

li;s for the PLS predictor is 0.85% under CV versus only 0.49% with SV.

4.2 Utility and Return Moments

We now demonstrate the relation between the conditional predictive distribution moments

and the utility consequences of predictability. As we show in Online Appendix D, the in-

sample CER difference between models Mi and Mj from the perspective of investor i,

DCERis
i;j, is highly dependent on the differences in optimal weights under the two models.

Intuitively, investor i perceives little economic loss in switching fromMi toMj if the two

models produce similar portfolio implications, whereas large differences between optimal

weights could lead to a substantial expected utility loss if the investor were to adopt

the suboptimal policy. Formally, the time-s CER difference between modelsMi andMj is

proportional to the squared difference between their optimal weights, ðx�i;s � x�j;sÞ
2, up to a

second-order Taylor approximation.12

Based on this relation and the weight approximation from Equation (17), the average

squared weight difference,

Average squared weight difference ¼ 1

T

XT

s¼1

li;s

cr2
i;s

�
lj;s

cr2
j;s

 !2

; (20)

is a moment-based calculation that is informative about the in-sample CER difference be-

tween modelsMi andMj. In our empirical applications in Section 5, we calculate CER dif-

ferences for the P-CV and NP-CV models in the CV setting and the P-SV and NP-SV

models in the SV setting. As such, model Mi incorporates return predictability so li;s is

time varying, whereas lj;s is constant in each case. We also showed in Section 4.1 that vola-

tility estimates are quite similar across models with and without return predictability, such

that r2
i;s � r2

j;s for each CER difference we consider.

Equation (20) encapsulates the effects of time variation in conditional moments. To bet-

ter understand the underlying mechanisms, we decompose the average squared weight dif-

ference into two components. We first introduce a mean component that reflects the

difference in the conditional means from modelsMi andMj. The average squared weight

difference that is attributable to the mean component is

Mean component ¼ r�2

c

 !2

1

T

XT

s¼1

ðli;s � lj;sÞ2
 !

; (21)

12 Under mean–variance utility, the CER difference is exactly proportional to the squared weight differ-

ence. Under more general utility functions (including power utility), the degree of approximation error

depends on higher-order derivatives of CER with respect to weight. Across the predictors in our em-

pirical analysis, we observe Spearman rank correlations between CER differences and average

squared weight differences of 0.997 for constant volatility and 0.946 for stochastic volatility, indicating

that the approximation is informative in our setting. See Online Appendix D for additional information.
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where r�2 is the average inverse of conditional variance from model Mi (i.e.,

r�2 ¼ 1
T

PT
s¼1 r�2

i;s ).13 Given that lj;s is constant for each model comparison, the
1
T

PT
s¼1 ðli;s � lj;sÞ2 term captures the degree of variation in the conditional mean implied

by model Mi. The mean component is, thus, informative about the strength of the return

predictability relation and its utility consequences.

The average squared weight difference is the sum of the mean component and a residual

component,

Residual component ¼ 1

T

XT

s¼1

li;s

cr2
i;s

�
lj;s

cr2
j;s

 !2

� r�2

c

 !2

1

T

XT

s¼1

ðli;s � lj;sÞ2
 !

: (22)

In the CV framework, the residual component is relatively small. In the SV setting, a large

residual can arise from interactions between li;s and r2
i;s. On the one hand, if a given pre-

dictor tends to make extreme return forecasts primarily during periods of high volatility,

these predictions will have a muted impact on portfolio choice such that the residual com-

ponent is negative and the average squared weight difference is smaller than the mean com-

ponent. On the other hand, the residual component is positive if a predictor tends to

produce more extreme forecasts in low-volatility periods, as the investor can react more ag-

gressively such that the average squared weight difference is larger than the mean compo-

nent. The sign and magnitude of the residual component are, therefore, informative about

the direction and strength of interactions between li;s and r2
i;s. In the next section, we use

Equations (20)–(22) to better understand in-sample CER gains.

5. In-Sample Results

In this section, we examine the market return predictors from the perspective of Bayesian

investors who believe in one of the models introduced in Section 2. Section 5.1 studies the

specific example of the dividend-price predictor under CV and a single-period horizon to il-

lustrate our approach to assessing the economic significance of a predictor. Section 5.2

details results for the broad set of predictors under CV and SV in a single-period setting.

Section 5.3 discusses the economic significance of return predictability with multi-period

horizons.

5.1 Example: Dividend-Price Ratio

We begin our analysis by focusing on the dividend-price ratio (DP) predictor in a setting

that closely matches that of Kandel and Stambaugh (1996). As shown in Table II, DP quali-

fies as a statistically weak predictor with a P-value of 0.16 for the OLS predictability coeffi-

cient and a monthly predictive regression R2 of 0.002. Following Kandel and Stambaugh

(1996), we examine DP from the perspective of an investor who believes that volatility is

constant.

Figure 3 shows properties of the predictive return distribution and optimal portfolio

weights in the CV framework. The top panel presents quantiles of the predictive return dis-

tribution from the P-CV model. The model produces a predictive return distribution for

each month in the sample period conditional on the value of DP, and the figure plots the

median (solid line) and 25th and 75th percentiles (dashed lines) of the distribution. The

13 See Online Appendix D for additional details.
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bottom panel shows the difference between the optimal portfolio weight under the P-CV

model and the optimal weight under the NP-CV model. As such, this weight difference iso-

lates the effect of incorporating information from the DP predictor variable.

The results in Figure 3 illustrate that even statistically weak evidence of return predict-

ability can have a large effect on the optimal portfolio weight of a Bayesian investor. The

optimal weight in stocks for the NP-CV model is 46% and constant across periods. An in-

vestor who believes in the P-CV model with the DP predictor varies her weight in stocks

between 3% (September 2000) and 100% (June 1932) during the sample period. The time-

series standard deviation of 0.22% for li;s from Table III translates into a standard

deviation of 16.65% for the weight in stocks. Despite the weak evidence of predictability,

the location of the predictive return distribution shifts over time from the perspective of the

P-CV investor as she optimally considers information from the predictor rather than dis-

carding it based on a statistical test.

To quantify the economic significance of the DP predictor for the P-CV investor, we cal-

culate the difference between the investor’s CERs under the optimal weights for the P-CV

and NP-CV models. The annualized CER gain is 0.24%, which represents the influence on

the predictive return distribution from considering the DP variable. This finding is

1930 1940 1950 1960 1970 1980 1990 2000 2010
-5%

0%

5%

1930 1940 1950 1960 1970 1980 1990 2000 2010
-60%

-30%

0%

30%

60%

Figure 3. Predictive return distribution quantiles and effects of predictability on portfolio weight for

the DP predictor. The figure shows quantiles of the predictive return distributions and weight differen-

ces for the CV models in which DP is the market return predictor variable. The top panel shows quan-

tiles of the predictive return distribution for the P-CV model. The solid line in the return distribution

represents the median and the dashed lines are the 25th and 75th percentiles in each month. The bot-

tom panel shows the differences in optimal portfolio weights between the P-CV and NP-CV models.

The weight differences represent the effect of including return predictability in the model.
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consistent with Kandel and Stambaugh’s (1996) conclusion that weak statistical evidence

of return predictability can be economically important.

5.2 Single-Period Horizon Results

Table IV reports the full set of CER gains across predictors. Panel A shows results for the

Goyal–Welch predictors and Panel B contains corresponding results for the new predictors.

For the CV cases, we report CER gains for the P-CV investor who compares weights from

the P-CV and NP-CV models. We also report the time-series mean and standard deviation

of the weight differences across the P-CV and NP-CV models. The SV results make the

analogous comparisons between the P-SV and NP-SV models from the perspective of the P-

SV investor. The CER gains are reported in percentage per year and the weight difference

statistics are reported in percentage.

Beginning with the CV CER gains, the results indicate substantial variation in economic

significance across predictors. The CER gains for the Goyal–Welch predictors in Panel A of

Table IV range from 0.03% (DE) to 0.68% (NTIS) per year. The mean weight differences

are less than 1% in magnitude for each predictor, such that little of the economic difference

between the P-CV and NP-CV models is attributable to a tendency to be more or less ag-

gressive under one framework. Across predictors, there is a close correspondence between

the CER difference and the standard deviation of the optimal weight differences under the

P-CV and NP-CV models. This pattern is in line with our discussion in Section 4.2.

Many of the new predictors in Panel B of Table IV have larger CER gains compared

with those in Panel A. The smallest CER gain is 0.55% (DOW) and the largest is 4.36%

(VRP) per year. Among the twelve new predictors, CER gains that exceed 1.00% per year

are achieved by seven predictors: PLS, GAP, NOS, TAIL, GP, VRP, and LJV. The large

CER gains for the new predictors reflect substantial variation in optimal weights, as evi-

denced by time-series standard deviations of weight differences that range from 30.73% to

90.21%. These findings confirm that the new predictors have considerable economic value

to investors who believe in the CV framework studied by Kandel and Stambaugh (1996).

Comparisons of these initial CER gains with those from the SV cases in Table IV dem-

onstrate that the economic significance of a given predictor can differ substantially depend-

ing on the investor’s views on volatility. Focusing on extreme examples, the CER gain for

TBL is 0.34% for the P-CV investor and 1.17% for the P-SV investor, whereas the CER

gain for the PLS variable is 3.36% for P-CV versus only 0.55% for P-SV. The CER compar-

isons reflect differences in investor behavior, as the standard deviation of weight differences

is much higher under CV for PLS and much higher under SV for TBL. These cases illustrate

that considering SV can either increase or decrease the economic gains from a given predict-

or variable. The CER gain is larger under SV for seven of the fourteen Goyal–Welch predic-

tors and four of the twelve new predictors.

To provide additional insights into the relative economic significance of return predic-

tors across the volatility frameworks, Table V builds upon the analysis in Section 4.2.

Three primary economic mechanisms are at work: (i) a statistical effect, (ii) an average

volatility effect, and (iii) a portfolio effect. First, the volatility framework impacts how the

investor learns about the predictability relation, which produces a statistical effect through

the posterior of the predictive regression beta. Second, the investor’s aggressiveness in bet-

ting on the conditional return forecast in a typical period depends on her views of how risky

the stock market is on average, which produces an average volatility effect. Third, a
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portfolio effect reflects the time-series relation between a predictor and market volatility. If

a given predictor tends to make its most extreme predictions during highly volatile times,

information in the predictor is less valuable to an investor.

Table V reports statistics that reflect the three effects described above. For each volatil-

ity model, we report the square root of the average squared weight difference from

Table IV. In-sample CER gains and weight differences associated with return predictability

The table reports CER gains and weight difference statistics that reflect the economic signifi-

cance of return predictability in models with CV or SV. The CV cases compare the P-CV model

with the NP-CV model for each predictor and the SV cases compare the P-SV and NP-SV mod-

els. For each specification, we report the CER difference (i.e., DCERis
i;j ) and the time-series mean

(i.e., x�i ;s � x�j ;s ) and the time-series standard deviation [i.e., rðx�i ;s � x�j ;sÞ] of the difference in

conditional portfolio weights. The CER gains are expressed in percent per year and the weight

difference statistics are reported as percentages.

CV SV

Predictor DCERis
i;j x�i;s � x�j;s rðx�i;s � x�j;sÞ DCERis

i;j x�i;s � x�j;s rðx�i;s � x�j;sÞ

Panel A: Goyal and Welch (2008) predictors

DP 0.24 –0.34 16.65 0.39 –0.34 34.31

DY 0.53 –0.26 24.70 0.35 –0.71 32.20

EP 0.41 –0.36 21.89 0.26 –0.83 26.90

DE 0.03 –0.75 5.66 0.02 0.24 7.02

SVAR 0.20 –0.66 14.97 0.23 –1.44 13.67

BM 0.51 0.02 24.34 0.23 1.65 24.99

NTIS 0.68 –0.73 27.94 0.53 –0.21 41.52

TBL 0.34 –0.31 19.82 1.17 0.78 52.08

LTY 0.17 0.17 14.00 0.83 1.70 45.87

LTR 0.32 –0.74 19.13 0.83 –0.29 47.54

TMS 0.26 –0.71 17.22 0.19 –1.03 22.86

DFY 0.05 –0.78 7.28 0.06 –0.31 11.56

DFR 0.27 –0.74 17.69 0.01 –0.15 4.21

INFL 0.11 –0.77 11.03 0.60 –0.88 35.84

Panel B: New predictors

PLS 3.36 1.30 62.07 0.55 –2.69 30.53

EG 0.81 –0.60 37.84 1.44 2.17 56.07

GAP 2.36 0.25 66.09 2.11 2.45 79.25

NOS 1.28 –0.46 47.24 1.52 1.24 72.46

DOW 0.55 –0.85 30.73 0.53 –2.11 38.06

TAIL 1.03 –0.54 41.89 0.52 –2.50 35.58

COR 0.72 –0.63 35.08 0.89 –1.38 55.21

SII 0.81 –1.20 35.68 0.72 –0.42 57.05

GP 1.70 –0.97 53.58 1.24 –0.65 75.04

OIL 0.65 –1.18 33.16 1.13 0.66 55.59

VRP 4.36 2.70 90.21 3.45 –0.79 78.02

LJV 1.65 –0.90 52.19 0.87 1.30 35.76
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Table V. Attribution of portfolio weight differences

The table reports statistics relating to the attribution of weight differences to mean components

and residual components. The CV cases compare the P-CV model with the NP-CV model for

each predictor and the SV cases compare the P-SV and NP-SV models. For each specification,

we report the mean component r�2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
s¼1
ðli ;s � lj ;sÞ2

s0
@

1
A, which estimates the impact on port-

folio weights of time variation in expected return, and the total variation of the moment-based

weight approximations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
s¼1

li;s

cr2
i;s
� lj ;s

cr2
j ;s

� �2

s0@
1
A. We calculate the ratio of total variation to mean

component. The table also shows the absolute values of ratios of the predictive betas (b) and

the precisions ðr�2 Þ across the P-SV and P-CV models. The mean component and total variation

statistics are reported in percentages.

CV SV Absolute ratios (jSV/CVj)

Mean Total Mean Total Predictive

Predictor Component variation Ratio component variation Ratio betas Precisions

Panel A: Goyal and Welch (2008) predictors

DP 16.57 16.52 1.00 30.47 36.29 1.19 0.95 1.90

DY 24.55 24.49 1.00 27.37 33.91 1.24 0.58 1.90

EP 21.87 21.74 0.99 26.15 28.12 1.08 0.63 1.89

DE 5.50 5.50 1.00 7.09 6.53 0.92 0.65 1.91

SVAR 15.27 14.84 0.97 49.68 13.91 0.28 1.65 1.91

BM 24.36 24.15 0.99 26.99 26.57 0.98 0.56 1.90

NTIS 28.06 27.75 0.99 43.88 47.14 1.07 0.81 1.92

TBL 19.78 19.73 1.00 57.94 56.31 0.97 1.51 1.94

LTY 13.86 13.84 1.00 45.90 50.04 1.09 1.70 1.94

LTR 19.17 18.96 0.99 46.74 48.94 1.05 1.27 1.92

TMS 17.09 17.03 1.00 21.93 23.49 1.07 0.67 1.90

DFY 7.35 7.18 0.98 19.25 11.44 0.59 1.29 1.91

DFR 17.71 17.51 0.99 3.84 3.49 0.91 0.11 1.91

INFL 11.06 10.92 0.99 45.97 36.88 0.80 2.17 1.91

Panel B: New predictors

PLS 67.50 61.77 0.92 73.99 32.35 0.44 0.57 1.84

EG 38.22 37.43 0.98 66.91 57.64 0.86 1.25 1.40

GAP 65.74 65.31 0.99 77.67 83.01 1.07 0.84 1.40

NOS 47.36 46.84 0.99 65.89 77.41 1.17 0.94 1.48

DOW 30.75 30.38 0.99 44.29 38.83 0.88 0.95 1.46

TAIL 41.77 41.61 1.00 40.88 36.11 0.88 0.65 1.48

COR 35.12 34.69 0.99 50.53 56.52 1.12 0.94 1.49

SII 35.55 35.37 1.00 35.95 69.12 1.92 0.66 1.52

GP 53.39 53.16 1.00 48.32 89.88 1.86 0.61 1.47

OIL 33.34 32.79 0.98 65.41 59.62 0.91 1.23 1.59

VRP 107.11 86.69 0.81 172.06 85.45 0.50 1.01 1.57

LJV 55.56 50.99 0.92 79.61 36.98 0.46 0.82 1.67
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Equation (20) and the square root of the mean component from Equation (21). The square

root of the average squared weight difference in Table V closely corresponds to the stand-

ard deviation of optimal weights in Table IV. We also report the ratio of total variation to

mean component for each predictor. A ratio greater than (less than) one indicates that the

actual variation in portfolio weights is greater than (less than) what would be expected

based solely on variation in li;s. That is, the portfolio effect is positive (negative) when the

ratio is greater than (less than) one. Finally, Table V reports the absolute ratios of predictive

betas (i.e., the posterior means of b) and precisions (r�2 ) from the SV and CV models. The

predictive beta ratio shows the strength of the statistical effect and the precision ratio corre-

sponds to the average volatility effect. Both ratios help to determine the relative magnitudes

of the mean components across the volatility frameworks.

We begin with the specific case of DP in Panel A of Table V. The mean component is

16.57% in the CV case, such that we would expect the time-series standard deviation of

weight differences to be 16.57% based on information in li;s. This figure is quite similar to

the total variation of 16.52%. Thus, the residual component is small and the ratio is close

to one. These findings indicate that time variation in li;s is the primary driver of economic

value in the CV framework. Under the SV framework, the total variation of 36.29% is

larger than the mean component of 30.47% and the ratio of these two figures is 1.19.

Thus, the total variation in weights is larger for DP than would be expected based on vari-

ation in li;s alone, such that the interaction between li;s and r2
i;s increases the economic sig-

nificance of DP under the P-SV model.

We can also compare results across the P-CV and P-SV models using the ratios of pre-

dictive betas and precisions. The DP predictive beta ratio of 0.95 indicates that expected

returns vary slightly less for the P-SV model than for the P-CV model. The precision ratio

of 1.90 shows that the SV investor believes that the average period is less volatile compared

with the CV investor, such that the P-SV investor can usually be more aggressive in betting

on return forecasts. Multiplying the CV mean component by both ratios closely approxi-

mates the SV mean component (i.e., 16:57%� 0:95� 1:90 ¼ 29:91% � 30:47%). The DP

results indicate that the relative magnitudes of CER gains of 0.24% under P-CV and 0.39%

under P-SV can be reconciled by noting that (i) the predictive betas are similar across the

two models (weak statistical effect), (ii) the SV investor believes she can be more aggressive

in trading on DP in the typical month because of the precision term (positive average vola-

tility effect), and (iii) the interaction between the time series of li;s and r2
i;s under P-SV is

beneficial to the investor (positive portfolio effect).

Analyzing the remaining predictors in Panel A of Table V reveals several notable pat-

terns. The average precision is always much higher under the SV model, such that the aver-

age volatility effect increases the economic significance of each predictor. This effect helps

to generate larger mean components for thirteen of the fourteen predictors compared with

the CV case. There are some cases in which the statistical effect of estimating the predictive

regression beta under alternative volatility models is important. For example, the predictive

beta ratio of 0.11 for DFR is influential in producing a mean component of only 3.84% for

the P-SV investor compared with 17.71% for the P-CV investor, whereas the INFL predict-

ive beta ratio of 2.17 assists in producing a mean component of 45.97% under SV versus

only 11.06% under CV. Finally, the portfolio effect from interactions between li;s and r2
i;s,

reflected by the ratio of total variation to mean component, is important in several cases.

As previously noted, the economic value of DP increases in the P-SV framework due to this

interaction and six of the other thirteen variables also gain. Notably, the ratio is only 0.28
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for the SVAR variable, such that the actual variation in portfolio weights is much less than

would be expected based on the mean component. This result is intuitive given that the

SVAR predictor measures stock market variance. As such, its most extreme predictions for

returns correspond to high-volatility periods in which the investor is unwilling to bet

aggressively.

Panel B of Table V shows results for the new predictors. The ratio of precisions remains

above one for each predictor and these positive average volatility effects assist in producing

higher mean components under SV for ten of the twelve predictors. As noted in Section 4,

the statistical effect of estimating the predictive regression under different volatility models

is important for some predictors including PLS and GP. The most important mechanism for

many of the predictors, however, is the portfolio effect observable from the ratio of total

weight variation to mean component. Notably, this ratio is 0.50 or less for three of the four

strongest predictors from Table II: PLS, VRP, and LJV. These low ratios provide evidence

that negative portfolio effects from interactions between li;s and r2
i;s for these variables sub-

stantially reduce their economic significance. The SII and GP variables, on the other hand,

both have ratios of total variation to mean component near two. These positive portfolio

effects help to offset the negative statistical effects reflected by predictive regression beta

ratios of 0.66 and 0.61 for SII and GP, respectively.

Overall, Table V provides evidence on the mechanisms that determine the CER gain for

a given predictor. First, the statistical effect that predictive regression beta estimates differ

across volatility models is important for several predictors. Second, the average volatility ef-

fect is always positive because the average return precision is higher under the SV frame-

work for each predictor, such that the investor believes that she can usually bet more

aggressively under this framework. Third, the portfolio effect from interactions between

li;s and r2
i;s is important for inferences about economic significance for many of the

predictors.

To illustrate the mechanisms underlying the results in Table V, we more closely examine

the PLS predictor variable. Table IV shows that the P-CV investor has a CER gain of

3.36% for this variable, whereas the P-SV investor’s CER gain is only 0.55%. A portion of

the decline in economic value of PLS is attributable to a shift in the investor’s views about

the statistical evidence of return predictability that is apparent in Figure 2. Nonetheless, the

statistical evidence that PLS positively forecasts market returns remains strong in the P-SV

model and over 98% of posterior draws of b are positive.

Table V indicates that the more pronounced effect of SV on the economic value of PLS

occurs through the portfolio effect as evidenced by the ratio of weight variation to mean

component of 0.44. Figure 4 shows the relation between PLS and the conditional variance

of market returns. The top panel plots the time series of the predictor variable and the bot-

tom panel shows the time series of the annualized standard deviation of market returns

implied by the posterior mean of the SV process. Consistent with past empirical work, mar-

ket volatility is highly time varying with large spikes that generally correspond to times of

economic uncertainty. Volatility peaked during the Great Depression, with the annualized

standard deviation reaching as high as 55%. This period of extreme market volatility corre-

sponds closely to the most extreme values of PLS. In particular, 90% of PLS observations

fall within the range of –1.30 to –0.45, but the variable drops as low as –3.44 during the

market volatility spike in the early 1930s.

Figure 5 shows predictive return distributions and weight differences for the P-CV and

P-SV investors who consider PLS. The top panels show the median (solid line) and 25th and
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75th percentiles (dashed lines) of the predictive return distribution from a given model. The

bottom panel on the left (right) plots the difference between the optimal portfolio weight

under the P-CV (P-SV) model and the optimal weight for the NP-CV (NP-SV) model. These

differences represent the effect of information from PLS on the optimal portfolio weight.

The results in Figure 5 demonstrate stark differences in the predictive return distribution

and optimal portfolio weights across the CV and SV cases. The most extreme differences

occur during the high-volatility period in the early 1930s. In the month with the lowest con-

ditional return forecast (January 1932), the P-CV investor aggressively bets against stocks

with a weight of –392%, which reflects an expected excess return of –6.31% and a predict-

ive standard deviation of 5.57% for the subsequent month. The P-SV investor adopts a rela-

tively modest portfolio weight of –25% in the same month given an expected excess return

of –3.19% and a high predictive standard deviation of 13.32%. The tendency for the most

extreme return forecasts for PLS to line up with periods of high volatility thus reduces the

P-SV investor’s ability to capitalize on information in the predictor. This time-series inter-

action between li;s and r2
i;s is reflected in Table V by the low ratio of weight variation to

mean component of 0.44 in the SV case.

5.3 Multi-Period Horizon Results

We now consider the economic significance of stock return predictors from the perspective

of Bayesian investors with multi-period horizons. Our broad sample of predictors produces
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Figure 4. PLS predictor variable and SV process. The figure shows the PLS predictor variable in

the top panel and the posterior mean of the annualized standard deviation of the stock market return

from the SV process in the bottom panel. The monthly standard deviation is annualized by multiplying

by
ffiffiffiffiffiffi
12
p

.
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a wide variety of time-series properties as described in Section 3. Overall, we find the most

dramatic multi-period effects for predictors with low persistence or pronounced SV in the

predictor (which is often reflected by extreme skewness and kurtosis in Table I). We use the

VRP predictor as an example to illustrate these economic channels in this section and we in-

clude a full analysis and discussion of all predictors in Online Appendix E. The VRP ex-

ample is interesting because of the large effects on perceived economic value even with

small increases in horizon, but we also find that the persistence and SV effects are important

for many of the predictors.

The CER gains for VRP decline dramatically when the horizon increases from 1 month

to as short as 3 months. Whereas the 1-month CER gain in the CV framework is 4.36% per

year for VRP, the annualized 3-month CER gain is only 1.00%. Similarly, in the SV frame-

work, the 1-month CER gain is 3.45% versus only 1.32% with a 3-month horizon. The

VRP variable exhibits low persistence, substantial SV in the predictor process, and a ten-

dency for extreme values within the sample period. Each of these features works against the

value of the variable for longer-term Bayesian investors.

Figure 6 shows the VRP predictor variable along with the SV processes for returns and

the state variable. The VRP variable displays a noticeable downward spike in October

2008, but we note that this observation post-dates the sample periods of the Bollerslev,
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Figure 5. Predictive return distribution quantiles and effects of predictability on portfolio weight for

the PLS predictor. The figure shows quantiles of the predictive return distributions for the P-CV and P-

SV models in the top panels and the differences in optimal portfolio weights between the P-CV and

NP-CV models and the P-SV and NP-SV models in the bottom panels in which PLS is the market return

predictor variable. The solid line in the return distribution represents the median and the dashed lines

are the 25th and 75th percentiles in each month. The weight differences represent the effect of includ-

ing return predictability in the model for the CV and SV cases.
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Tauchen, and Zhou (2009) and Drechsler and Yaron (2011) studies such that the initial evi-

dence for VRP in the literature is not driven by the outlier. Nonetheless, this observation

contributes to a pattern observed throughout the sample that the conditional volatility of

VRP is highly variable. There is also a tendency for spikes in the volatility of VRP to coin-

cide with spikes in market volatility.

Figure 7 plots predictive return distributions and weight differences for 1-month and 3-

month horizons. Panel A (Panel B) shows results for the CV (SV) models. The predictive re-

turn distribution plots report the median and 25th and 75th percentiles of the distribution

of 1-month or 3-month cumulative returns. The weight differences are the difference be-

tween optimal weights for the P-CV and NP-CV models in Panel A and the difference be-

tween optimal weights for the P-SV and NP-SV models in Panel B.

The 1-month, CV results show that the investor aggressively shifts her portfolio weights

in response to changes in VRP. The weight in stocks for the P-CV investor ranges from –

656% (November 2008) to 512% (September 1998) compared with the NP-CV weight of

76%. The optimal weights for the 3-month P-CV investor are muted relative to the 1-

month results. The weight in stocks varies between –297% and 285% during the sample

period (the NP-CV optimal weight is 75%). The most important impact of the longer hori-

zon for this investor is the lack of persistence in VRP as indicated by the low posterior

mean of 0.28 for bx, such that any variation in expected return is perceived to be short-
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Figure 6. VRP predictor variable and SV processes. The figure shows the VRP predictor variable in the

top panel, the posterior mean of the annualized standard deviation of the stock market return from the

SV process in the middle panel, and the posterior mean of the standard deviation of the VRP predictor

variable from the SV process in the bottom panel. The monthly standard deviation of market returns is

annualized by multiplying by
ffiffiffiffiffiffi
12
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.
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Figure 7. Predictive return distribution quantiles and effects of predictability on portfolio weight for

the VRP predictor. The figure shows quantiles of the predictive return distributions and weight differ-

ences for the CV models in Panel A and the SV models in Panel B in which VRP is the market return

predictor variable. In Panel A (Panel B), the top panels show quantiles of the predictive return
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lived and primarily affects only the first month of the holding period. The more moderate

positions taken by the 3-month P-CV investor are reflected by the relatively low CER gain

of 1.00% compared with 4.36% for the 1-month investor.

The results in Panel B of Figure 7 for the SV cases also show large horizon effects. The

weight difference for the 3-month P-SV investor is noticeably devoid of large spikes, al-

though there is variation in the optimal weight that produces a CER gain of 1.32%. The

mechanism at work in the SV case is different from that in the CV case. After considering

SV, the investor perceives VRP to be more persistent compared with the CV model given

the posterior mean of 0.63 for bx, such that the variation in the conditional 3-month

expected return suggests that utility gains could be large. However, the optimal portfolio

weights are still relatively moderate for the 3-month P-SV investor because of effects of

horizon on beliefs about risk. In particular, investing for multi-period horizons is risky

from the perspective of the Bayesian investor when the predictor variable takes extreme val-

ues and is highly volatile. Intuitively, even if the conditional expected return for the first

month in the holding period is high, the volatile predictor implies that the expected returns

in months 2 and 3 are highly uncertain. Thus, a positive bet on the high conditional

expected return runs the risk that the expected return moves against the bet during the

holding period. In the most extreme periods for VRP, the 3-month predictive return distri-

butions are marked by high variance and kurtosis as a result of this additional uncer-

tainty.14 In the months in which the predictor makes its most extreme forecasts of the

conditional expected return, the investor moderates her positions and avoids making large

bets given the high perceived risk. This behavior is reflected by the relatively low 3-month

CER gain.

6. Out-of-Sample Results

The results in Sections 4 and 5 correspond to an in-sample design. The advantage of this ap-

proach is that we consider information from the full sample in characterizing how the rela-

tions between predictors and volatility impact economic significance (see, e.g., Inoue and

Kilian, 2005). Following the influential study of Goyal and Welch (2008), the literature on

aggregate stock market return predictability now places considerable emphasis on out-of-

sample tests. Such tests offer a complementary characterization of the value of return

Figure 7. Continued

distribution for the P-CV (P-SV) model at the 1-month and 3-month horizons. The solid line in the re-

turn distribution represents the median and the dashed lines are the 25th and 75th percentiles in each

month. The bottom panels of Panel A (Panel B) show the differences in optimal portfolio weights be-

tween the P-CV and NP-CV (P-SV and NP-SV) models at the 1-month and 3-month horizons. The

weight differences represent the effect of including return predictability in the model for each case.

14 Pástor and Stambaugh (2012); Avramov, Cederburg, and Lu�civjanská (2018); and Carvalho, Lopes,

and McCulloch (2018) demonstrate that uncertainty about future expected returns has a substan-

tial positive effect on predictive variance over long horizons. We complement the findings of these

studies by showing large effects over short horizons for predictors with low persistence and high

volatility.
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predictability by considering the performance of hypothetical investors who rely on predic-

tors to make real-time forecasts and portfolio allocations.

In this section, we present results from out-of-sample tests. As detailed in Section 2.4.2,

these tests employ an expanding-window design with an initial training period of

240 months. For each combination of model and predictor, we estimate the model for each

month of the out-of-sample period and determine the optimal portfolio weight using data

that would have been available to a real-time investor. Given the full time series of out-of-

sample portfolio weights for each model and predictor, we construct a time series of real-

ized portfolio returns and compute the CER for this return series under power utility. Our

analysis focuses on the CER differences for the P-CV and NP-CV models and for the P-SV

and NP-SV models. We assess statistical significance of the CER differences using a boot-

strap approach as detailed in Online Appendix A.

Prior research suggests that out-of-sample tests of aggregate stock market return predict-

ability impose a high bar for success. Goyal and Welch (2008) consider a comprehensive set

of predictors and find that almost all exhibit poor performance in forecasting mean returns

out of sample and very few offer utility benefits for real-time investors. Several papers pub-

lished subsequent to Goyal and Welch (2008) present evidence that individual predictor

variables perform well in out-of-sample exercises, but the empirical methods differ across

studies. Moreover, Goyal, Welch, and Zafirov (2021) examine many of these recently pro-

posed predictors using an extended sample and a unified empirical framework and find

that most variables offer no forecasting or investment benefits in real time.

There is some reason for ex ante optimism in our setting, as the BVAR framework

accounts for realistic features of the real-time portfolio choice problem, including param-

eter uncertainty and SV in market returns and predictors. Johannes, Korteweg, and Polson

(2014) employ a similar econometric framework and show economically significant port-

folio benefits for real-time investors who rely on the payout yield. They emphasize the im-

portance of accounting for time-varying volatility and estimation risk in achieving these

out-of-sample gains. Our results offer an important contribution by incorporating these fea-

tures in tests for a much broader set of predictors. We also expect the economic effects

related to predictor properties highlighted in Sections 4 and 5 to play an important role in

the out-of-sample analysis. That is, predictors exhibiting fat tails and taking extreme values

in high volatility periods are likely to be of more limited economic value to investors.

For each predictor, Table VI reports the out-of-sample CER gains at the 1-month invest-

ment horizon. The CV results are CER differences in percentage per year for investors using

the P-CV model relative to those using the NP-CV model. We also report the time-series

standard deviation of the weight differences across the P-CV and NP-CV models. The SV

results provide an analogous comparison for the P-SV and NP-SV models. Online

Appendix F contains supplementary empirical results for the out-of-sample analysis,

including distributional statistics for the out-of-sample returns for each model and predict-

or, out-of-sample Sharpe ratio gains, and out-of-sample CER gains for investors with lon-

ger holding periods. Our design choice to start the out-of-sample period 240 months after

the start of data availability for each predictor is consistent with prior studies (see, e.g.,

Goyal and Welch, 2008; Goyal, Welch, and Zafirov, 2021), but produces a short out-of-

sample evaluation window for some of the new predictors (e.g., VRP and LJV). We demon-

strate in Online Appendix F, however, that the conclusions in Table VI are robust to using

a shorter initial training sample of 120 months.
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Most of the Goyal–Welch predictors in Panel A of Table VI lead to CER losses under

the CV framework. Ten of the fourteen CER differences are negative, with an extreme

value of –1.12% per year for BM. Of the four positive CER gains under CV, none is statis-

tically significant at conventional levels and the largest value is just 0.29% per year (TMS).

Table VI. Out-of-sample CER gains

The table reports out-of-sample CER gains (DCERos
i ;j ) that reflect the economic significance of re-

turn predictability in models with CV or SV. The CV cases compare the P-CV model with the NP-

CV model for each predictor and the SV cases compare the P-SV and NP-SV models. The CER

gains are expressed in percentage per year. We assess statistical significance of the CER gains

using a bootstrap approach. The P-value corresponds to the one-sided test of the null hypoth-

esis that the gain is less than zero. For each specification, we also report the time-series stand-

ard deviation (in percentage) of the conditional weight difference [i.e., rðx�i;s � x�j ;sÞ]. The

holding period for the portfolio strategies is 1 month.

CV SV

Predictor OS start DCERos
i;j P-value rðx�i;s � x�j;sÞ DCERos

i;j P-value rðx�i;s � x�j;sÞ

Panel A: Goyal and Welch (2008) predictors

DP 1947:02 –0.44 0.819 17.92 2.17 0.036 48.65

DY 1947:02 –0.86 0.809 42.39 3.06 0.035 66.43

EP 1947:02 –0.89 0.812 37.60 2.07 0.024 41.15

DE 1947:02 0.13 0.346 11.46 0.36 0.259 24.18

SVAR 1947:02 0.16 0.153 5.47 1.23 0.000 12.45

BM 1947:02 –1.12 0.940 32.84 1.01 0.149 35.28

NTIS 1947:02 –0.10 0.538 23.81 –0.28 0.615 40.56

TBL 1947:02 –0.13 0.586 24.34 3.86 0.011 64.21

LTY 1947:02 –0.60 0.800 25.40 3.07 0.033 56.46

LTR 1947:02 0.00 0.499 21.16 1.91 0.077 64.69

TMS 1947:02 0.29 0.257 19.06 0.84 0.301 44.70

DFY 1947:02 –0.19 0.966 4.91 0.66 0.047 17.22

DFR 1947:02 –0.07 0.573 14.01 –0.07 0.535 18.73

INFL 1947:02 –0.09 0.655 8.66 1.44 0.014 30.76

Panel B: New predictors

PLS 1947:02 1.02 0.067 23.75 0.24 0.346 31.81

EG 1959:06 0.03 0.473 24.32 0.80 0.094 24.24

GAP 1968:01 2.78 0.126 76.93 2.50 0.091 70.19

NOS 1978:03 –0.23 0.572 48.90 0.54 0.320 59.46

DOW 1980:02 –1.11 0.848 35.70 –0.35 0.653 37.17

TAIL 1983:02 0.77 0.250 37.86 0.88 0.140 34.78

COR 1983:04 –2.56 0.877 44.73 –3.57 0.977 53.83

SII 1993:02 1.27 0.034 24.87 0.23 0.345 29.68

GP 1995:02 2.17 0.208 72.78 1.60 0.180 61.35

OIL 2003:05 –12.91 0.983 62.47 –3.65 0.816 95.56

VRP 2010:02 3.18 0.181 59.92 3.22 0.192 64.45

LJV 2016:07 –4.30 1.000 7.76 –4.00 1.000 33.72
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These results are consistent with those of Goyal and Welch (2008) who find similarly weak

out-of-sample performance for these predictors. Their frequentist asset allocation exercise

is similar to our CV comparison, but does not account for parameter uncertainty.

Relative to the Goyal–Welch predictors, the new predictors in Panel B of Table VI gen-

erate more extreme investment results under the CV framework. The CER gains range

from –12.91% for OIL to 3.18% for VRP. The new predictors tend to be somewhat more

successful than the Goyal–Welch predictors are, as seven of the twelve CER gains are posi-

tive. Just two of the CER differences (PLS and SII), however, are statistically significant at

the 10% level.

The CV results in Table VI reveal another important distinction between in-sample and

out-of-sample inferences. Whereas the discussion in Section 4.2 implies a direct connection

between weight variation and CER gains based on the predictive return distribution, the

out-of-sample tests condition on subsequent return realizations. Aggressive bets carry the

potential for extreme performance realizations in this setting. Table VI indicates that larger

weight variation tends to be associated with CER differences that are large in absolute mag-

nitude, whether they be gains (e.g., the 2.78% CER gain for GAP, which has a 76.93%

standard deviation of weight differences) or losses (e.g., the 12.91% CER loss for OIL with

a 62.47% standard deviation).

The most striking result in Table VI is that accounting for SV in returns and predictors

leads to substantially better out-of-sample investment performance. In line with the results

and discussion in Section 5.2, the SV investors tend to trade more aggressively compared

with the CV investors for the Goyal–Welch predictors as evidenced by the standard devia-

tions of weight differences, and these bets tend to pay off. The P-SV model generates a

larger CER than does the NP-SV model for twelve of the fourteen Goyal–Welch predictors.

Across these fourteen predictors, the CER gains are as high as 3.86% per year for TBL, and

the worst performing model (NTIS) results in a CER loss of just 0.28% per year. Nine of

the CER gains for the Goyal–Welch predictors are statistically significant at the 10% level.

These results are surprising given the notoriously poor out-of-sample performance for these

predictors shown in prior work. They also highlight the importance of incorporating realis-

tic features into the portfolio choice problem, most notably SV and parameter uncertainty.

In Panel B, the new predictors fare reasonably well under the SV framework, but the

performance is considerably less impressive relative to that of the Goyal–Welch predictors.

Eight of the twelve CER gains in Panel B are positive. There are, however, three variables

that produce annualized CER differences below –3.00% (COR, OIL, and LJV). Among the

new predictors, only EG and GAP generate out-of-sample CER gains that are statistically

significant at the 10% level.15 Nonetheless, the totality of the results in Table VI generalizes

15 We acknowledge that some predictors could be economically insignificant on a stand-alone basis,

but still contribute to economic value in a multi-predictor setting. To provide a preliminary examin-

ation of this question, we estimate “kitchen sink” versions of the P-CV and P-SV models using the

set of fifteen predictors that have data spanning the full sample period. We focus on out-of-sample

performance in this setting given the tendency of highly parameterized models to overfit the data in

sample and Martin and Nagel’s (2021) emphasis on the importance of out-of-sample tests in high-

dimensional prediction problems. We find that the P-CV model produces an annualized CER gain of

–5.30% per year at the one-month horizon relative to the NP-CV model. This result is consistent

with the poor out-of-sample performance of kitchen sink models in prior work (see, e.g., Goyal and

Welch, 2008). Perhaps surprisingly, the P-SV model leads to an out-of-sample CER gain of 3.20%
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Johannes, Korteweg, and Polson’s (2014) finding of the importance of accounting for time-

varying volatility to a broad set of return predictors.

7. Summary

Table VII provides a summary of our analysis. The first three columns of the table indicate

whether or not each predictor exhibits empirical properties that we have argued are signals

of potential economic value: (i) low kurtosis, (ii) high persistence, and (iii) a tendency to

take on moderate values during times of high stock market volatility. The remaining col-

umns summarize the statistical performance of the predictors in OLS regressions (Table II)

and the economic performance of the predictors based on in-sample CER gains (Table IV

and Table E.IV in the Online Appendix) and out-of-sample CER gains (Table VI and Table

F.V in the Online Appendix). Table VII reveals four key takeaways.

First, in the classic 1-month, CV setting, there is a strong in-sample relation between

statistical and economic performance. The OLS R2 from a predictive return regression is a

strong indicator of economic value, and even weak statistical evidence can produce non-

trivial utility gains.

Second, even with a 1-month horizon, accounting for SV in returns can drive a wedge

between the statistical and economic performance of a given predictor. As we formalize in

the paper, SV impacts the economic significance of many predictors through a statistical ef-

fect, an average volatility effect, and a portfolio effect. The portfolio effect is most pro-

nounced for predictors exhibiting high kurtosis and a tendency to take extreme values in

periods of high stock market volatility. Several predictors exhibit these properties (e.g.,

BM, PLS, VRP, and LJV) and the economic value of these variables under SV (in-sample

SV1 column in Table VII) is muted relative to that under CV (in-sample CV1 column).

Third, in multi-period settings, the persistence level of predictor variables produces

strong effects on expected return and risk. For example, the estimated half-lives of the AR

processes followed by the NOS, DOW, TAIL, OIL, and VRP predictors are less than 1 year

(i.e., b̂x < 0:944 in Table II) and these predictors see large drops in economic value going

from the in-sample CV1 case to the in-sample CV3 case in Table VII.

Fourth, the importance of predictor properties on economic outcomes extends to out-of-

sample settings, particularly when the investor accounts for SV. We confirm the well-

established result that the predictors from Goyal and Welch (2008) lead to poor out-of-

sample performance under the CV framework. Many of these variables, however, produce

large CER gains under SV. The real-time performance of the new predictors in the SV setting

is noticeably less consistent, as the distributional properties of these variables can limit their

economic value to investors.

If we define an economically successful predictor as one that delivers CER gains in ex-

cess of 0.5% per year in both in-sample and out-of-sample tests at multiple horizons while

accounting for SV, then six of the twenty-six predictors meet this threshold: TBL, LTY,

EG, GAP, NOS, and GP. Notably absent from this list are several new predictors with im-

pressive statistical performance.

relative to the NP-SV model. We are cautious to draw broad conclusions about the generalizability

of the success of SV models in multiple-predictor settings. Based on these results, however, the im-

portance of accounting for SV and parameter uncertainty on equity premium prediction with mul-

tiple predictors represents an interesting question for future work.
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Table VII. Summary of results

The table provides a summary of properties for stock market return predictor variables, the stat-

istical performance of these variables in standard predictive regressions, and the economic per-

formance of these variables based on in-sample and out-of-sample asset allocation exercises.

The columns under the “predictor properties” heading detail whether or not a given predictor

follows a distribution with fat tails, has low persistence, or takes extreme values in high-volatil-

ity periods. The column under the “OLS” heading details whether or not a given predictor

generates an R2 value above 0.5% in an OLS predictive regression. The columns under the “in-

sample results” and “out-of-sample results” headings summarize in-sample and out-of-sample

CER gains that reflect the economic significance of return predictability in models with CV or

SV at horizons of 1 or 3 months. The CV cases compare the P-CV model with the NP-CV model

for each predictor and the SV cases compare the P-SV and NP-SV models.

Predictor properties OLS In-sample results Out-of-sample results

�:Condition satisfied � : R2 > 0:5% � : DCERis
i;j > 0:5% � : DCERos

i;j > 0:5%

�:Condition violated � : R2 � 0:5% 1(2): DCERis
i;j > 0:5% � : DCERos

i;j < 0:0%

P1: KurtðxtÞ < 5:0 and 0.5% larger (smaller)

P2: bx > 0:944 than CV1 case

P3: qðjxt � xtj; r2
t Þ < 0:2

Predictor P1 P2 P3 OLS CV1 CV3 SV1 SV3 CV1 CV3 SV1 SV3

Panel A: Goyal and Welch (2008) predictors

DP � � � � — — — — � � � �

DY � � � � � � — — � � � �

EP � � � � — — — — � � � �

DE � � � � — — — — — — — —

SVAR � � � � — — — — — — � �

BM � � � � � — — — � � � —

NTIS � � � � � � � — � � � �

TBL � � � � — — �1 �1 � � � �

LTY � � � � — — �1 �1 � � � �

LTR � � � � — — �1 — — — � �

TMS � � � � — — — — — — � �

DFY � � � � — — — — � � � �

DFR � � � � — — — — � — � �

INFL � � � � — — � — � — � —

Panel B: New predictors

PLS � � � � � �2 �2 �2 � � — �

EG � � � � � � �1 � — � � �

GAP � � � � � � � �2 � � � �

NOS � � � � � �2 � �2 � � � �

DOW � � � � � — � — � � � �

TAIL � � � � � �2 �2 — � — � —

COR � � � � � � � � � � � �

SII � � � � � � � � � � — —

GP � � � � � � � �2 � � � �

OIL � � � � � — � — � � � �

VRP � � � � � �2 �2 �2 � � � �

LJV � � � � � � �2 �2 � � � �
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8. Conclusion

We evaluate the economic significance of stock market return predictors from the perspec-

tive of Bayesian investors while accounting for realistic features of the data and investors’

capital allocation decisions. Our work complements Kandel and Stambaugh’s (1996) result

that even weak statistical evidence of predictability is economically important by showing

that there are several predictors for which strong statistical findings correspond to limited

economic significance.

Supplementary Material

Supplementary data are available at Review of Finance online.
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